10 research outputs found

    FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods

    Early Detection of the Advanced Persistent Threat Attack Using Performance Analysis of Deep Learning

    Get PDF
    One of the most common and critical destructive attacks on the victim system is the advanced persistent threat (APT)-attack. An APT attacker can achieve its hostile goal through obtaining information and gaining financial benefits from the infrastructure of a network. One of the solutions to detect a unanimous APT attack is using network traffic. Due to the nature of the APT attack in terms of being on the network for a long time and the fact that the system may crash due to the high traffic, it is difficult to detect this type of attack. Hence, in this study, machine learning methods of C5.0 decision tree, Bayesian network, and deep learning are used for the timely detection and classification of APT-attacks on the NSL-KDD dataset. Moreover, a 10-fold cross-validation method is used to experiment with these models. As a result, the accuracy (ACC) of the C5.0 decision tree, Bayesian network, and 6-layer deep learning models is obtained as 95.64%, 88.37%, and 98.85%, respectively. Also, in terms of the critical criterion of the false positive rate (FPR), the FPR value for the C5.0 decision tree, Bayesian network, and 6-layer deep learning models is obtained as 2.56, 10.47, and 1.13, respectively. Other criterions such as sensitivity, specificity, accuracy, false-negative rate, and F-measure are also investigated for the models, and the experimental results show that the deep learning model with automatic multi-layered extraction of features has the best performance for timely detection of an APT-attack comparing to other classification models.publishedVersio

    Early Detection of the Advanced Persistent Threat Attack Using Performance Analysis of Deep Learning

    No full text
    One of the most common and critical destructive attacks on the victim system is the advanced persistent threat (APT)-attack. An APT attacker can achieve its hostile goal through obtaining information and gaining financial benefits from the infrastructure of a network. One of the solutions to detect a unanimous APT attack is using network traffic. Due to the nature of the APT attack in terms of being on the network for a long time and the fact that the system may crash due to the high traffic, it is difficult to detect this type of attack. Hence, in this study, machine learning methods of C5.0 decision tree, Bayesian network, and deep learning are used for the timely detection and classification of APT-attacks on the NSL-KDD dataset. Moreover, a 10-fold cross-validation method is used to experiment with these models. As a result, the accuracy (ACC) of the C5.0 decision tree, Bayesian network, and 6-layer deep learning models is obtained as 95.64%, 88.37%, and 98.85%, respectively. Also, in terms of the critical criterion of the false positive rate (FPR), the FPR value for the C5.0 decision tree, Bayesian network, and 6-layer deep learning models is obtained as 2.56, 10.47, and 1.13, respectively. Other criterions such as sensitivity, specificity, accuracy, false-negative rate, and F-measure are also investigated for the models, and the experimental results show that the deep learning model with automatic multi-layered extraction of features has the best performance for timely detection of an APT-attack comparing to other classification models

    Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model

    No full text
    Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models

    Deep learning applications in single-cell genomics and transcriptomics data analysis

    No full text
    Traditional bulk sequencing methods are limited to measuring the average signal in a group of cells, potentially masking heterogeneity, and rare populations. The single-cell resolution, however, enhances our understanding of complex biological systems and diseases, such as cancer, the immune system, and chronic diseases. However, the single-cell technologies generate massive amounts of data that are often high-dimensional, sparse, and complex, thus making analysis with traditional computational approaches difficult and unfeasible. To tackle these challenges, many are turning to deep learning (DL) methods as potential alternatives to the conventional machine learning (ML) algorithms for single-cell studies. DL is a branch of ML capable of extracting high-level features from raw inputs in multiple stages. Compared to traditional ML, DL models have provided significant improvements across many domains and applications. In this work, we examine DL applications in genomics, transcriptomics, spatial transcriptomics, and multi-omics integration, and address whether DL techniques will prove to be advantageous or if the single-cell omics domain poses unique challenges. Through a systematic literature review, we have found that DL has not yet revolutionized the most pressing challenges of the single-cell omics field. However, using DL models for single-cell omics has shown promising results (in many cases outperforming the previous state-of-the-art models) in data preprocessing and downstream analysis. Although developments of DL algorithms for single-cell omics have generally been gradual, recent advances reveal that DL can offer valuable resources in fast-tracking and advancing research in single-cell

    Single-cell RNA sequencing uncovers heterogeneous transcriptional signatures in tumor-infiltrated dendritic cells in prostate cancer

    No full text
    Prostate cancer (PCa) is one of the two solid malignancies in which a higher T cell infiltration in the tumor microenvironment (TME) corresponds with a worse prognosis for the tumor. The inability of T cells to eliminate tumor cells despite an increase in their number reinforces the possibility of impaired antigen presentation. In this study, we investigated the TME at single-cell resolution to understand the molecular function and communication of dendritic cells (DCs) (as professional antigen-presenting cells). According to our data, tumor cells stimulate the migration of immature DCs to the tumor site by inducing inflammatory chemokines. Many signaling pathways such as TNF-α/NF-κB, IL2/STAT5, and E2F up-regulated after DCs enter the tumor location. In addition, some molecules such as GPR34 and SLCO2B1 decreased on the surface of DCs. The analysis of molecular and signaling alterations in DCs revealed some suppression mechanisms of tumors, such as removing mature DCs, reducing the DC's survival, inducing anergy or exhaustion in the effector T cells, and enhancing the differentiation of T cells to Th2 and Tregs. In addition, we investigated the cellular and molecular communication between DCs and macrophages in the tumor site and found three molecular pairs including CCR5/CCL5, CD52/SIGLEC10, and HLA-DPB1/TNFSF13B. These molecular pairs are involved in the migration of immature DCs to the TME and disrupt the antigen-presenting function of DCs. Furthermore, we presented new therapeutic targets by the construction of a gene co-expression network. These data increase our knowledge of the heterogeneity and the role of DCs in PCa TME

    Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection

    No full text
    The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including PGLYRP4 and HEPHL1, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway, IL-17 signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug–target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19
    corecore